

AFRL-RI-RS-TM-2008-22
In-House Technical Memorandum
June 2008

FORMAL METHODS TO SUPPORT THE DESIGN
OF DISTRIBUTED SYSTEMS

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Public
Affairs Office and is available to the general public, including foreign nationals. Copies
may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TM-2008-22 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

DUANE GILMOUR, Chief JAMES A. COLLINS, Acting Chief
Computing Technology Applications Advanced Computing Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JUN 08
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Jun 07 – Sep 07
4. TITLE AND SUBTITLE

FORMAL METHODS TO SUPPORT THE DESIGN OF DISTRIBUTED
SYSTEMS

5a. CONTRACT NUMBER
In-House

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Dilia E. Rodriguez

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
AFRL/RITB
525 Brooks Rd
Rome NY 13441-4505

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RITB
525 Brooks Rd
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TM-2008-22

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# WPAFB 08-3655

13. SUPPLEMENTARY NOTES
This research was funded by the 2007 RI/AFOSR Mini Grant program.

14. ABSTRACT
This work contributes to a formal framework to support the development of distributed
systems: a specification serves to document a system; it can be executed to simulate the
system; and it can be subjected, either directly or after some modular extension or
transformation, to various kinds of formal analyses. Two on-the-fly techniques to reduce
the state space were developed: one a symmetry reduction; the other a partial-order
reduction. These are implemented as simple transformations of the specification of the
system. A third transformational technique allows the verification of nontrivial
properties not readily expressible in linear temporal logic.

15. SUBJECT TERMS
Verification, formal specification

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

20

19a. NAME OF RESPONSIBLE PERSON
Dilia Rodriguez

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

2007 IF/AFOSR MiniGrant Report

Formal Methods

to Support the Design of Distributed Systems

Dilia E. Rodŕıguez

AFRL / RITB
Dilia.Rodriguez@rl.af.mil

315-330-4280

1 Introduction

A distributed system is composed of different parts that work together to provide
one or more functions. Its state space grows exponentially with the number of
components. So it becomes extremely difficult to consider all the possible behav-
iors of the system, and consequently, difficult or impossible to make guarantees
about it. Here we report on techniques to reduce the state space and to verify
strong, nontrivial properties. This contributes to a framework to support the
development of a distributed system: a specification serves to document the sys-
tem; it can be executed to provide some debugging, and to simulate the system;
and it can be subjected either directly or after some modular transformations
to various kinds of formal analyses.

This research developed techniques that modularly transform the specifica-
tion of a system to be analyzed. Two simple transformations implement on-the-
fly state-space reductions, one a symmetry reduction, the other a partial-order
reduction. A third transformational technique allows the verification of proper-
ties that are not readily expressible in linear temporal logic.

In designing a good system there must be a clear understanding of the prop-
erties it should satisfy. Some mathematical fields deal with structure and rea-
soning about properties, and these are the fields that underlie formal methods
— rigorous techniques for the specification and analysis of computational sys-
tems. So formal methods are well poised to describe the structure of distributed
systems, and reason about their properties.

There are a variety of formal methods for the specification and analysis
of systems. They differ in the mathematics that underlie them, the kinds of
properties they can specify and analyze, and the available tools associated with

1

mailto:Dilia.Rodriguez@rl.af.mil

them. In general, there are two basic approaches to the analysis and verifica-
tion of properties: theorem proving and state-space exploration. Of the two
approaches, theorem proving is, in theory, applicable to systems with state
spaces of any size, but requires a high level of expertise; while a state-space
exploration approach is applicable only to finite-state systems, but requires less
expertise, and is more automatic. Both formal approaches require more power-
ful techniques to provide practical support for the development of distributed
systems.

The formal system selected for this research is Maude — an executable logic
of concurrent change. It has been shown to be a framework for a wide range
of computational models and logics. This means not only that models and
properties expressible in these formal systems can be expressed and analyzed
in Maude, but that the sound integration of various such descriptions becomes
possible, and with this more powerful means of studying systems. Furthermore,
Maude provides various formal methods to study a specification as it is being
developed. Executable specifications can serve to debug the specification, and
provide prototypes of the specified system. A search command serves to explore
the state space, making it possible to check the existence of different scenarios
in the system, as well as checking invariant properties of the system. Model
checking makes possible the verification of properties expressible in linear tem-
poral logic. In isolation and in combination these methods can be used to study
a specification as it is being developed. The main objective of this research
was to develop techniques that would allow the application of these methods to
specifications of systems of larger size and more complex properties.

To motivate and evaluate the techniques developed, a client-server protocol
was studied, a simplification of the Chain-Replication protocol developed by
van Renesse and Schneider [7]. Three techniques were developed: an on-the-
fly symmetry reduction technique that modularly augments a specification, a
technique with auxiliary data to support the verification of strong properties,
and a technique to reduce the state space using a partial-order approach.

All these techniques, though only applied to a singe protocol in this study,
are general techniques that could be applied to a wide range of protocols. The
symmetry-reduction technique can be applied to any system with identical com-
ponents. This technique was very effective in reducing the state space. While
some techniques are very effective in reducing the state space when verifying
shallow properties, verification of strong properties is a greater challenge. The
second technique permitted the verification of the strong property the Chain-
Replication protocol should satisfy, and should be applicable to the verification
of strong properties of other protocols. Finally, the partial-order reduction tech-
nique developed resulted in a small reduction of the state space when applied to
the client server protocol under study. The effectiveness of this technique, how-
ever, is determined by the interdependencies of the transitions of the protocol.
So further evaluation of this technique should include its application to other
protocols. A significant innovation of this technique is that it is applied to the
specification of a system, rather than to the model checking algorithm that will
be used to verify properties of the specification, which is the usual case. This

2

makes possible the exploitation of properties of the specification, that might
not be possible when the technique is applied to the model checker. Thus there
should be further investigation, optimization and evaluation of this technique.
I will be presenting a paper describing this research at the 7th International
Workshop on Rewriting Logic and its Applications, WRLA08.

Section 2 introduces Maude preliminaries, in particular those related to
object-based specifications. The specification of the simplication of the Chain-
Replication protocol is presented in Section 3. The next section discusses the
on-the-fly symmetry reduction technique and its application to the protocol.
Section 5 motivates and describes a technique that uses auxiliary data to verify
the strong-consistency property this protocol should satisfy. Section 6 describes
a partial-order reduction technique that modifies the specification of the proto-
col. The conclusions and future work are presented in Section 7.

2 Maude Preliminaries

Maude [2][3] is an executable language based on rewriting logic [5], a logic
of concurrent change. In rewriting logic, a concurrent system is specified by
a rewrite theory R = (Σ, E,R), where (Σ, E) is an equational theory with
the signature Σ specifying sorts (types) and operations; E, a set of equations
on Σ-terms; and R, a set of labelled conditional rewrite rules, of the form
l : t −→ t′ if cond . The equational theory describes the distributed structure
of the system, while the conditional rewrite rules define its basic concurrent
transitions.

A rewrite theory corresponds to a system module in Maude. For system
modules that satisfy some executability requirements [3], a rewrite rule describes
not only a transition between states, but a transition between equivalence classes
of states, where the equivalence classes are defined by the equations of the
rewrite theory. Thus, properly defined executable specifications in Maude have
this condensed and reduced state space.

Maude supports object-based models, with a predefined module declaring
sorts for the essential concepts, namely Object, Msg, and Configuration.

mod CONFIGURATION is sorts Object Msg Configuration

A configuration is a multiset of messages and objects. In particular, a single
message or a single object is a configuration. Maude supports subsorts, so this
can be expressed as follows:

subsort Object Msg < Configuration .

A configuration is described by a term of sort Configuration constructed with
the following operators:

op none : -> Configuration [ctor] .

op __ : Configuration Configuraton -> Configuration

[ctor config assoc comm id: none] .

3

The first takes no arguments, and represents a configuration with neither objects
nor messages. The second takes two arguments, which are juxtaposed (the is
a placeholder, and there is no syntax between the arguments), and is declared
with attributes of a multiset: it is associative, commutative, and has identity
none.

A typical configuration has the form O1 . . .On M1 . . .Mm, where the O’s
represent objects and the M ’s messages. The most general form of a conditional
rewrite rule for an object-based model is of the form:

l : M1 . . .Mm O1 . . .On → O′
i1 . . . O

′
ik

Q1 . . . Qp M1 . . .Mq if C

This rule, labelled by l, represents transitions in which, if the condition C holds
for the configuration on the left side of the rule, messages M1 . . .Mm are con-
sumed; the states of some of the objects O1 . . . On change, becoming O′

i1
. . . O′

ik
,

k ≤ n, with the rest disappearing; and new objects Q1 . . . Qp and messages
M1 . . .Mq are created.

3 A Client-Server Protocol

The client-server protocol studied is a simplified version of the Chain-Replication
protocol developed by van Renesse and Schneider [7]. Their protocol has m
servers and n clients, but from the perspective of a client there is a single
server. The innovation of the protocol is in achieving fault tolerance and high
throughput through the collective service provided by the servers, but the state-
explosion problem is present in configurations with a single server and several
clients. The simplified version of the Chain Replication protocol is used to
develop techniques to reduce the state space, and to define (and check in its
limiting case) the property the Chain-Replication protocol should satisfy.

In this protocol the server stores an object, whose value a client may observe
by making queries, or change by requesting updates. Informally, the property
this protocol must satisfy is that any response to a query by a client must reflect
prior updates.

An object-based model of this protocol has servers and clients as objects,
and requests and replies as messages.

sorts Client Server . subsorts Client Server < Object .

sorts Request Reply . subsorts Request Reply < Msg .

A client is represented using the following operator:

op < client_ | request-count :_, outstanding :_, value :_>

: NzNat Nat Bool Value -> Client [ctor] .

A nonzero natural serves to identify a client, and a request count is used to
limit the number of requests a client can make, ensuring that the state space
remains finite. Each client keeps the value of the object, as it has observed it
through requests to the server. The protocol stipulates that a client may have

4

at most one outstanding request. For the purposes of this study it is not useful
to consider failures or messages lost, and so as long as there is an outstanding
request the client may not issue another. Boolean attribute outstanding indicates
whether the client has initiated a request for which it is expecting a reply.

A request instructs the server to perform an operation on the object: a query
is a read operation, while an update is a write operation.

op query[_] : NzNat -> Request [ctor] .

op update[_:_] : NzNat Value -> Request [ctor] .

The action of a client sending a query is represented by the following conditional
rule.

crl [send-query]

< client N | request-count : K, outstanding : false, value : V >

=> < client N | request-count : s K, outstanding : true, value : V >

query[N] if K < lim .

Similarly, a client sending an update is represented by the following rule:

crl [send-update]

< client N | request-count : K, outstanding : false, value : V >

=> < client N | request-count : s K, outstanding : true, value : V >

update[N : val(N, s K)] if K < lim .

Either request may be made only if there is no outstanding request, that is, if
outstanding is false. If the request is a query, it is represented symbolically by
query[N], which identifies the requesting client. If the request is an update, it
must include the value the client is submitting. This is represented symbolically
as val(N, K), which indicates that this is the value client N submitted in its s K-th
request.

How requests or replies are transported from sender to receiver is not deter-
mined by the protocol, and so a term of sort Msg in the configuration represents
a message that has been sent but not received.

The server receives and processes requests. It is represented using the fol-
lowing operator:

op < server | pending :_, value :_>

: RequestQueue Value -> Server [ctor] .

It receives a request by removing it from the configuration and enqueueing it in
the pending queue.

rl [get-request]

< server | pending : Q, value : V > R

=> < server | pending : Q ; R, value : V > .

As the server processes a request of a client, it sends a reply confirming the
operation. It replies to a query with the current value of the object; and to an
update with the value the client had requested be assigned to the object, which
is now the current value. So a reply has the following syntax.

5

op reply-to[_:_] : NzNat Value -> Reply [ctor] .

where the first argument identifies the client to which it is addressed.
The act of the server processing a request and replying is represented by a

single rule. Processing a query preserves the value of the object.

rl [respond-to-query]

< server | value : V, pending : query[N] ; Q >

=> < server | value : V, pending : Q > reply-to[N : V] .

Processing an update may change it.

rl [respond-to-update]

< server | value : V’, pending : update[N : V] ; Q >

=> < server | value : V, pending : Q > reply-to[N : V] .

A reply in the configuration represents a message in transit from the server
to some client. A client receives a reply by the following rule.

rl [get-reply] :

reply-to[N : V’]

< client N | request-count : K, outstanding : true, value : V >

=> < client N | request-count : K, outstanding : false, value : V’ > .

The attribute outstanding becomes false, since receiving the reply concludes the
operation.

Thus, the state of this system consists of one server, one or more clients,
and possibly various requests and replies. This configuration is enclosed within
delimeters as follows:

sort TConfiguration .

op {_} : Configuration -> TConfiguration [ctor] .

representing the state as a term of sort TConfiguration.
To analyze a protocol using methods that explore the state space requires

that the protocol be instantiated. Two parameters characterize an instantiation
of the client-server protocol just described: size, the number of clients; and
lim, the number of requests a client may make. The server and all clients are
initialized with a special value, and in all experiments lim was 3.

The search command, which is part of the Maude system, allows one to
explore the state space in a variety of ways (see [3]). Through arguments and
various forms it may return all states (for finite state spaces), or all states
satisfying some property, or the first n states it finds, for a specified n. The
result of the command includes the number of states examined in obtaining the
result. Table 1 shows the results of various experiments in which the final states
of a given instantiation were requested, using the following command:

search { init(size) } =>! TC:TConfiguration .

For the instantiation of size 4, that is, with one server and four clients, after
much swapping the computation would abort. These results show that even for
small instantiations of a very simple protocol state spaces can be very large.
The next section describes a way of reducing the state space.

6

size 2 3 4

total states 4,933 952,747 > 4, 194, 304
final states 37 511
cpu time (ms) 290 35,978 628,583
real time (ms) 2,454 45,009 22,307,029

Table 1: Metrics for basic specification.

4 Symmetry Reduction

Many distributed systems include identical components. Thus, if one such com-
ponent reaches a particular state in one of the possible behaviors of the sys-
tem, an identical component would reach the same state in a similar behavior.
Exploiting symmetry as a general approach is not new. When and how it is
exploited can result in different techniques and effectiveness. This section first
presents mathematical preliminaries for exploiting symmetry. (For a more com-
plete presentation see [1][4].) Then it describes a class of systems and how to
use symmetry to reduce the state spaces of these systems.

4.1 Mathematical Preliminaries

A transition system is a pair A = (A,→A) where A is a set of states and
→A⊆ A × A is a binary relation called the transition relation. A permutation
π on a finite set A is a function π : A → A that is one-to-one and onto. It is
an automorphism on A if it is such that for all a, a′ ∈ A, a →A a′ if and only
if πa →A πa′. Given an automorphism π on A, a0, . . . an is a path in A if and
only if πa0, . . . πan is a path in A. Any set of automorphisms on A closed under
composition and the inverse operation is a group. An automorphism groupG on
A induces a relation �G: A×A such that a �G a′ if and only if there exists an
automorphism π ∈ G such that a = πa′. A congruence on A is an equivalence
relation ≈ where for all a1, a2 ∈ A such that a1 ≈ a2, if there exists a′1 ∈ A such
that a1 →A a′1, then there is a′2 ∈ A such that a′1 ≈ a′2 and a2 →A a′2. The
relation �G is a congruence on A.

Let [a] denote the class of states equivalent to a. For any a, a′ ∈ A, if
a →A a′, then for all a1 ∈ [a] there exists a′1 ∈ [a′] such that a1 →A a′1.
A quotient transition system AG = (AG,→AG) of transition system A with
respect to a permutation group G is defined by AG = {[a] | a ∈ A} and
→AG= {[a] →AG [a′] | a →A a′}. Given an equivalence class [a] in AG,
some ∗a ∈ [a] may be chosen to represent [a], and a quotient representative
system AG∗ = (AG∗ ,→AG∗) of may be defined by AG∗ = {∗a | [a] ∈ AG} and
→AG∗ = {∗a →AG∗ ∗a′ | [a] →AG [a′]}. Thena is reachable from a0 in A if and
only if ∗a is reachable from ∗a0 in AG∗ .

7

4.2 States, Indexed Objects and Automorphisms

In the client-server protocol, clients are specified uniformly as indexed objects,
and indices are further used to represent values symbolically. Thus, the states
of the system may be expressed as functions on indices. More generally, a state
with a finite set of identical components may be described using a finite set of
indices I, and a function s : I → A, where A is a set of states. A permutation
πI : I → I induces a permutation π : A → A defined by π s(i1, . . . , in) =
s(πI i1, . . . , πI in). The question now is which permutations on states induced by
permutations on indices are automorphisms.

To determine this, consider the effect of permuting indices on each of the
rules of the specification. A close examination of all the rules of the client-server
protocol shows that whether a rule is enabled is independent of the values of
indices. Thus, for the client-server protocol all permutations on indices induce
permutations on states that are automorphisms. This will hold for any speci-
fication in which objects with identical behavior are specified uniformly using
indices. Two objects have identical behavior when their set of possible states is
the same, and whenever they have the same state, they react in the same way.
Next, the fact that all permutations of indices induce automorphisms on states
is exploited in a technique for reducing the state space on the fly.

4.3 On-the-fly State-Space Reduction

To analyze a system using state-space exploration methods the parameters of the
specification must be instantiated. In particular, a system with identical com-
ponents must be instantiated with a fixed number of such components, using
indices to differentiate among them. As seen above, the set of all permutations
of these indices induces a group G of permutations on states that are automor-
phisms. The equivalence class with respect to G for state s is [s] = {πs | π ∈ G},
and some ∗s ∈ [s] is selected as its representative. We consider how to compute
with representatives of these equivalence classes.

There is no guarantee that transitions map representative states to represen-
tative states. So there is the need to recognize when a transition has occurred,
and to obtain the representative corresponding to the state resulting from the
transition.

From a specification R, we construct in a modular way one that implements
on-the-fly state-space reduction, R∗ = (Σ ∪ Σ∗, E ∪ E∗, R′). Signature Σ∗ and
equations E∗ define permutations, how to apply them, construct equivalence
classes, and chose representative states, and the set of rules R′ is a trivial trans-
formation of R.

New syntax and equations in (Σ∗, E∗) define permutations on indices.

sorts Replacement Perm . subsort Replacement < Perm .

op _|->_ : NzNat NzNat -> Replacement [ctor] .

op __ : Perm Perm -> Perm [ctor assoc] .

The application of a permutation P to a term t is expressed as P >> t. We do not
present the definition of permutations on indices, but indicate that all-perms N

8

is the group of all permutations on {1, . . . , N}.
For the client-server protocol the permutation on states is specified by equa-

tions effecting the change of indices throughout a term representing a state. For
example, the effect of such a permutation on a symbolic value and on a reply is
given by:

eq P >> val(I, K) = val(P >> I, K) .

eq P >> reply-to[I : V] = reply-to[P >> I : P >> V] .

while the effect on clients and servers is as follows:

eq P >> < client I | request-count : K, outstanding : B, value : V >

= < client (P >> I) | request-count : K, outstanding : B, value : P >> V > .

eq P >> < server | pending : Q, value : V >

= < server | pending : P >> Q, value : P >> V > .

The augmentation (Σ∗, E∗) to the original specification R = (Σ, E,R) also
defines how to select a representative among the states in [s]. This is defined
using a predefined parametric predicate on terms that Maude provides. Maude
is a reflective language. Every term, equation and rule can be represented at a
metalevel. At this level Maude defines a total order on the metarepresentations
of terms. This total order can be checked from the ground or object level with
the predicate lt. Thus, if t1 and t2 are terms at the object level, they have
some metarepresentations T1 and T2 at the metalevel. Because there is a total
order on metarepresentations of terms, for distinct T1 and T2, the predicate
lt(t1, t2) is defined to be true if and only if T1 precedes T2. This predicate is
used to select a representative for an equivalence class [s], where s is a term
representing a state of the system. The representative is chosen to be the
state whose metarepresentation is least among the metarepresentations of all
the states in [s].

Let s be any state of the system specified by R = (Σ, E,R). If the system
is object-based, state s is a term of sort Configuration. Introduce the following
operators:

op all-perms : -> PermSet .

op _|_ : PermSet Configuration -> Configuration [frozen (1 2)] .

The constant all-perms is the group of all permutations on the set of indices
{1, . . . , n}, where n is the number of identical components in the instantiated
system. The operator _|_ applies a set of permutations to a state, and returns
the representative of the resulting set of states. This operator takes two argu-
ments, and its attribute frozen (1, 2) prohibits the application of rules to either
argument. The selection of the representative of [s], for a configuration state s
is defined for Configuration C, Perm P, and NePermSet sP as follows:

eq emptyPermSet | C = C .

eq P | C = emptyPermSet | if lt(P >> C, C) then P >> C else C fi .

eq P U sP | C = sP | if lt(P >> C, C) then P >> C else C fi .

9

size 2 3

total states 2,473 176,897
reduction 50% 81%

final states 19 95
cpu time (ms) 3,089 821,392
real time (ms) 4,861 911,346

Table 2: Metrics for basic specification with on-the-fly symmetry reduction.

Recall that the goal is to compute with representatives of the equivalence
classes of a quotient system. Since transitions on representative states do not
necessarily reach representative states, whenever a transition leads to a state s,
this state must be mapped to the representative of [s], that is, to ∗s.

The next question is how to detect that a transition has occurred. For this
introduce a subsort Marker of Msg, with constants ? and !. Modify each rule in
R by adding ? to its left side, and ! to its right side. Given an initial state
with a single pretransition marker ?, the consumption of ? and appearance of !

indicates that a transition has occurred. Then the representative state can be
selected before reintroducing ?.

eq { ! C } = { ? (all-perms | C) } .

Table 2 shows the results obtained when using the on-the-fly state-space reduc-
tion just described.

5 Strong Consistency

The protocol described in Section 3 is a simplification of the Chain-Replication
protocol described in [7]. The property that should hold for this protocol should
hold also for its simplification. It requires that query and update operations be
executed in some sequential order, and that the effects of update operations
be reflected in the results returned by subsequent query operations. Thus, the
correctness of this protocol requires that the value a server has at one time
agree with the value a client will receive at a later time. The protocol presented
in Section 3 does not permit the verification of this property. It is a minimal
specification, in which the state is as simple as can be to describe the protocol.
The strong-consistency property the protocol should satisfiy requires a state
with more information. Information that is specific to each client. This section
transforms the specification presented in Section 3 into one that will support
the verification of the strong-consistency property of the client-server protocol.

An important form of property in linear temporal logic is

�(φ→ (�ψ)).

This means that for any path, whenever a state satisfies property φ there will
be some later state in the path that will satisfy property ψ. The form of the

10

property the client-server protocol should satisfy, however, is of the form:

∀X. ∀ i.�(φi(X) → (�ψi(X))).

Here X is a value the server assigns to the object, and i identifies a client. The
predicate φi(X) states that the server replies to client i with value X ; while
predicate ψi(X) states that client i receives X in a reply. No such binding of
the variable X , however, is expressible in linear temporal logic.

In fact, the property the client-server protocol should satisfy in all states is
concerned not only with the eventual value the client will receive, but also with
the value it currently has. Thus, the form of the property is more complex than
the one described above, and remains not directly expressible in linear temporal
logic. So we transform the specification of Section 3 to be able to verify this
property.

That specification does not keep any information about the required agree-
ment between server and client. This will now be added. The server is the
keeper of the value of the object; while a client may request update and query
operations. These are not instantaneous, so we define what it means for a client
and server to agree on the value of the object.

This protocol allows a client to have at most one outstanding request for an
operation. A client initiates the operation by sending a request, marked by the
attribute outstanding becoming true. The server eventually receives it, processes
it, and replies to the client. When the client receives the response its outstanding

attribute becomes false, and the operation is completed.
With the reception of the reply the client updates its value of the object.

This should result in the client agreeing with the value the server had when it
processed the last request by this client. This is the condition that should hold
whenever the outstanding attribute has value false.

There are three stages while a request is outstanding. The first begins when
the request is sent (with send-query or send-update). The request becomes part
of the configuration. The second begins when the get-request rule removes this
request from the configuration and enqueues it in the pending attribute of the
server. During these two stages the agreement should still be that the client
should have the same value of the object as the server had when the server
processed the last request by this client.

The last stage begins when the server processes the request, which may be
with the respond-to-query or respond-to-update rule, and sends the reply. This
reply to the client becomes part of the configuration. The agreement condition
during this stage is that the client should have the value the server had when it
processed the previous to last request by this client, or if this is the first request
by this client, the client should have its initial value of the object.

To be able to determine whether the required agreement holds at all times
the specification will have auxiliary data.

sort AuxData . subsort AuxData < Msg .

op (_[_]_) : Value NzNat Value -> AuxData .

11

size 2 3

total states 9,025 3,253,621
cpu time (ms) 1195 668,728
real time (ms) 1212 7,046,545

Table 3: Metrics for specification that supports verification of strong consistency.

For each client, the values the server had when it processed the last and previous
to last requests will be kept: (P [I] L).

The only other change to the original specification is to the rules that process
the requested operations:

rl [respond-to-query] :

(P [N] V’) < server | value : V, pending : query[N] ; Q >

=> (V’ [N] V) < server | value : V, pending : Q > reply-to[N : V] .

rl [respond-to-update] :

(P [N] V’) < server | value : V’,pending : update[N : V] ; Q >

=> (V’ [N] V) < server | value : V, pending : Q > reply-to[N : V] .

which now must update the auxiliary data to reflect the value the server had
when it processed the last and previous to last operations requested by this
particular client.

So in all states a client should have one of the last two values the server
had when processing a request by this client. During the third phase of an out-
standing request by client I the configuration (i.e.state) includes reply-to[I : V]

as well as the auxiliary datum (P [I] V). In any state during this stage client
I should have value P. Otherwise, when there is no reply for client I, it should
have the last value in (P [I] V), that is, V.

The search command can be used to verify that this property holds for all
clients in all states. Simply search for any state that satisfies the negation of
the required property. The following search command seeks states that violate
the agreement between server and client that was described above.

search { init(size) } =>*

{ < client I:NzNat |

request-count : K:Nat, outstanding : B:Bool, value : V’:Value >

(P:Value [I:NzNat] V:Value) C:Configuration }

such that

((reply-to[I:NzNat : V:Value] in C:Configuration)

and (V’:Value =/= P:Value))

or ((not (reply-to[I:NzNat : V:Value] in C:Configuration))

and (V’:Value =/= V:Value)) .

If no such state is found then the instantiation of the protocol that was subjected
to this search satisfies the strong consistency property.

Instantiations of the specification with one server and two clients, and with
one server and three clients, were found to be strongly consistent. Table 3 shows
the results of the experiments that obtained these verifications.

12

size 2

total states 4519
final states 90
cpu time (ms) 5357
real time (ms) 9053
property verification
cpu time (ms) 5046
real time (ms) 5052

Table 4: Metrics for symmetry reduction in the verification of strong consistency.

Table 4 gives the metrics for the search of all final states, and for the verifi-
cation of consistency using symmetry reduction.

6 Partial-Order Reduction

Section 4 describes how to compute with representative states. This section
describes how to compute representative paths. Having introduced the prop-
erty the client-server should satisfy it becomes possible to consider partial-order
reduction (POR). This approach is based on properties that some transitions
have: for some pairs of transitions the order in which they are executed does not
matter, and some transitions do not affect whether a property holds. Usually
POR techniques are combined with model-checking algorithms. Here, instead,
the POR approach is used to modify the specification of the system.

The main point about the POR approach is that in exploring the state
space some transitions are ignored. A finite state transition system is a tuple
(S, S0, T, AP, L), where S is a finite set of states, S0 ⊆ S is a set of initial
states, T is a finite set of transitions, such that each α ∈ T is a partial function
α : S → S, AP is a finite set of propositions, and L : S → 2AP is a labelling
function. The set of enabled transitions in state s is denoted by enabled(s).
If α ∈ enabled(s), the state reached by taking α is denoted by α(s). POR
techniques explore only transitions in some set ample(s) ⊆ enabled(s).

Two concepts are used to define such a set. First, an independence relation
I ⊆ T × T that is symmetric and antireflexive. Transitions α, β ∈ I if for
all states s ∈ S, if α ∈ enabled(s), then β ∈ enabled(s) if and only if β ∈
enabled(α(s)). Second, a transition α is invisible if for all s ∈ S, L(s) = L(α(s)).
Based on these concepts [1] gives four conditions that ample(s) must satisfy in
order to preserve the satisfaction of properties invariant under stuttering.

Consider these concepts for the client-server protocol. In Maude transitions
are specified by rules, usually having variables. Partially instantiating the rules
of the client-server protocol the following transitions are used to define the
independence relation: qi, client i makes a query; ui, client i requests an update;
gi, client i gets a reply; gqi and gui, the server gets a query and an update from
client i; and sqi and sui, the server responds to a query and an update from
client i. Table 5, in which i and j are distinct indices, gives the dependencies

13

gui gqi sui sqi guj gqj suj sqj ui qi gi uj qj gj

gui d i d i d d i i d i i i i i
gqi i d i d d i i i i d i i i i
sui d i d d i i d d i i d i i i
sqi i d d d i i d d i i d i i i
ui d i i i i i i i d d d i i i
qi i d i i i i i i d d d i i i
gi i i d d i i i i d d d i i i

Table 5: Dependencies Table for client-server protocol

among these transitions.
In checking the consistency property with the search command no explicit

atomic propositions are defined. The search pattern, however, corresponds to
a finite set of atomic propositions. The transitions that affect the satisfaction
of these propositions are the ones that change auxiliary data, or the values the
clients and server have. The remaining transitions, ui, qi, gui and gqi, are the
invisible transitions.

The basic idea presented here to take advantage of the POR approach is that
the representation of the state may have two parts: one part allows the appli-
cation of rules, the other one is frozen and does not. In [6] such a partitioning
keeps a part of the state on which no transitions are enabled in the frozen part
of the state. Here, to implement a POR technique, the frozen part of the state
also includes parts of the state that have enabled transitions, but that are not
in ample(s).

Consider conditions ample(s) must satisfy. Condition C2 requires that if
ample(s) �= enabled(s) then every α ∈ ample(s) must be invisible. While one
consequence of condition C1 is that all transitions in enabled(s)\ample(s) must
be independent from those in ample(s).

Consider whether ample(s) could consist of the transitions of an individual
client. Whenever outstanding is false and request-count < lim for client i, invis-
ible transitions ui and qi are enabled. Transitions dependent on these cannot
be simultaneously enabled. Thus, any other enabled transitions would be inde-
pendent from these. Now consider condition C1, which requires that for every
path in the full state graph that starts at s some transition in ample(s) must
be executed before a transition dependent on one on ample(s). The discarded
paths start with prefixes of independent transitions. Let α be the first transi-
tion in these paths that is dependent on {ui, gi}. Suppose it is a transition of
client i. Table 5 indicates that it could be one of these: ui, qi, gi. The first two
are in ample(s), satisfying C1. For gi to be enabled either ui or qi must have
been executed before, but the transitions that were executed were independent
of {ui, gi}, so this case is impossible. Now suppose α is one of the dependent
server transitions: gui or gqi. Again this case cannot arise since they must be
preceded by ui or qi, respectively. This client-server specification has no cycles
so condition C3 is satisfied. Thus, ample(s) could be {ui, gi}. In such a state
the entire configuration except client i would be in the frozen part of the state.

14

Further examination of Table 5 and the conditions ample(s) must satisfy re-
veal that there is no ample(s) that is a proper subset of enabled(s) and contains
transitions of the server.

As in the implementation of symmetry reduction, markers are used to indi-
cate when a transition has occurred, and provide for an opportunity to discover
ample(s). Since the only ample(s) is the one discussed above, a new marker
is introduced: op ! : NzNat -> Marker ., which is used to indicate that ui and gi

are enabled.
rl [get-reply] :

? reply-to[N : V’]

< client N | request-count : K, outstanding : true, value : V >

=> < client N | request-count : K, outstanding : false, value : V’ >

!(N) .

There may be several clients that are enabled to send requests, so the rep-
resentation of the state includes a list of the ids of those clients. Anytime the
above transition is executed the id of the client is entered in the (ordered) list.

op _|*_ : Configuration Configuration -> Configuration

[ctor frozen (2) format (n++i n--i n++i n--i)] .

op _#{_} : NzNatList Configuration -> TConfiguration

[ctor frozen(1) format (n n n n++i n--i n)] .

op _#[_] : NzNatList Configuration -> TConfiguration [ctor frozen(1 2)] .

Only states that have a proper ample(s) are partitioned in two, but after the
transition is executed, a new ample set gets constructed.

eq (! C) |* C’ = ! C C’ .

eq (!(I) C) |* C’ = !(I) C C’ .

If client I has just been enabled to send requests, then I gets inserted in the list
of ids.

eq L # {!(I) C} = (I ~> L) # [C] .

eq L # {! C} = L # [C]

The first id in the list determines the ample set.
eq nil # [C] = nil # {? C} .

ceq I, L # [< client I |

request-count : N, outstanding : B, value : V > C]

= L # { (? < client I |

request-count : N, outstanding : B, value : V >) |* C }

if N < lim .

ceq I, L # [< client I |

request-count : N, outstanding : B, value : V > C]

= L # [< client I |

request-count : N, outstanding : B, value : V > C]

if N >= lim .

Once the ample set has been determined, and, if necessary, the state has been
partitioned, the pretransition marker is reintroduced. Table 6 shows the result
for the case with one server and two clients. The property was checked by three
searches, one for each of the forms the state can take.

15

size 2

total states 8815
reduction 2.3%
cpu time (ms) 1321, 907, 895
real time (ms) 1332, 918, 903

Table 6: Metrics for the application of the POR technique.

7 Conclusion and Future Work

The design and development of highly assured distributed systems is challenged
by the state-explosion problem, and often by the complexity of the properties to
be verified. We developed two techniques for the reduction of the state space: an
on-the-fly symmetry reduction, and an on-the-fly partial-order reduction. We
also developed a technique for verifying strong, nontrivial properties that are
not directly expressible in linear temporal logic. A couple of points are worth
noting in appraising the value of this work.

First, in practice much of what is considered analysis of distributed systems
is performed using simulations. These analyses examine only a few behaviors
of the system. A Maude specification is executable, and so it can also be used
for simulations by simply executing it. This may be used to perform some ini-
tial debugging of the specification or to gain a greater understanding of the
system being developed. Simulation, however, whether formal or informal, is
not verification, and is not a foundation for trusted systems. The techniques
presented here support verification through exhaustive exploration of the state
space. They contribute to a framework in which it is possible to document and
specify, simulate and verify a system by modularly extending or transforming
formal, object-oriented specifications. and thus they contribute to the advance-
ment of formal support for the design of distributed systems.

Second, there is no single technique that will eliminate the state-explosion
for all specifications. What are needed are techniques that can be composed
and combined. The techniques developed in this study impose no restrictions
on the specifications on which they are applied, and can be easily composed.
They are implemented by simple transformations and modular extensions of the
original specifications. No translation to different logics are needed.

Additional research needs to investigate general and protocol-specific opti-
mizations to the two state-space reduction techniques that will reduce the time
and memory overhead. Furthermore, in order to verify larger and more com-
plex systems, composition of these and other techniques need to be studied, and
applied to a collection a protocols, including some common benchmarks.

A new area of research is to explore notions and characterizations of data
independence, which would permit the verification of large and infinite systems
by the verification of much smaller systems.

16

References

[1] E. M. Clarke, O. Grumberg, D. Peled. Model Checking. MIT Press, Cam-
bridge, MA, 2000.

[2] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer,
and J. Quesada. Maude: specification and programming in rewriting logic.
Theoretical Computer Science, 285, 2002.

[3] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer. All
About Maude — A High-Performance Logical Framework: How to Specify,
Program and Verify Systems in Rewriting Logic. Springer Verlag, 2007.

[4] C. N. Ip, D. L. Dill. Better verification through symmetry. Formal Methods
in System Design. V. 9 N.1–2, pages 41–75. August, 1996.1

[5] J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73–155, 1992.

[6] D. E. Rodŕıguez. On Modelling Sensor Networks in Maude. Electronic
Notes in Theoretical Computer Science, Volume 176, pages 199–213, 2007.

[7] R. van Renesse, F. Schneider. Replication for Supporting High Through-
put and Availability. Proc. of the Sixth Symposium on Operating Systems
Design and Implementation, December 2004.

17

